Take-Home Exam

Definition 1. A subset $X \subset S^1$ is called **dense** if for any $\varepsilon > 0$ and any point $p \in S^1$ there is a point $x \in X$ on the open arc of length 2ε centered at p.

Problem 1. Let $\lambda := e^{i\varphi} \in S^1$ be a point on the unit circle and consider the subset of points $X_\lambda := {\{\lambda^n\}}_{n \in \mathbb{Z}} =$ $\{\ldots,\lambda^{-2},\lambda^{-1},1,\lambda,\lambda^2,\ldots\} \subset S^1.$

(a) (5 *pts)* Show that X_{λ} *is finite if and only if* $\varphi = \frac{p}{q}$ $\frac{p}{q} \pi$ with $p, q \in \mathbb{Z}^1$ $p, q \in \mathbb{Z}^1$

(b) *(*10 *pts) Show that if the set* X^λ *is infinite, then for any* ε > 0*, there exist two points* x1, x² ∈ X^λ *with the distance* $d(x_1, x_2) < \varepsilon^2$ $d(x_1, x_2) < \varepsilon^2$ $d(x_1, x_2) < \varepsilon^2$

¹Hint: $e^{in_1\phi} = e^{in_2\phi} \Leftrightarrow e^{i(n_1-n_2)\phi} = 1 = e^{2k\pi i} \dots$

²Hint: what is the maximal number of points on the unit of

²Hint: what is the maximal number of points on the unit circle with the distance between any pair at least ε ?

(c) (10 *pts*) Show that if X_{λ} is infinite, then it is a dense subset of $S^{1,3}$ $S^{1,3}$ $S^{1,3}$

Characters and DFT

Definition 2. Let G be a finite abelian group and $\mathbb{C}^* = \{z \in \mathbb{C} \mid z \neq 0\}$ the multiplicative group of nonzero complex numbers. A **character** of G is a homomorphism $\chi : G \to \mathbb{C}^*$. Recall, that a map χ is a group homomorphism provided $\chi(gh) = \chi(g)\chi(h).$

Henceforth in this section we assume $G = \mathbb{Z}/n\mathbb{Z}$. Let $\omega = e^{2\pi i/n}$ be the primitive n^{th} root of unity and χ_j the character given by $\chi_j(1) = \omega^j$.

Problem 2. *Define a Hermitian inner product on characters via*

$$
\langle \chi_i, \chi_j \rangle := \frac{1}{G} \sum_{g \in G} \chi_i(g) \overline{\chi_j(g)}.
$$

(a) (5 pts) *Let* χ *be a character. Show that*^{[4](#page-1-1)}

$$
\frac{1}{G}\sum_{g\in G}\chi_j(g)=\begin{cases}1, & j=0\\0, & j\neq 0.\end{cases}
$$

(b) *(*5 *pts) Verify that*

$$
\langle \chi_i, \chi_j \rangle = \begin{cases} 1, & i = j \\ 0, & i \neq j. \end{cases}
$$

³Hint: let $x_1 = \lambda^{n_1}$, $x_2 = \lambda^{n_2} \in X_\lambda$ be two points with $d(x_1, x_2) < \varepsilon$, then the point $\lambda^{n_1 - n_2}$ is on distance at most ε from $O = \lambda^0 = (1, 0)$. Now let $t = n_1 - n_2$ and take a look at the subset $\{\ldots, \lambda^{-2t}, \lambda^{-t}, 1, \lambda^{t}, \lambda^{2t}, \ldots\} \subset X_{\lambda} \subset S^1$.

⁴Hint: let h ∈ G be an element and notice the equality of sets $\{hg\}_{g\in G} = \{g\}_{g\in G} = G$, in other words action by h on the left is a bijective map from G to itself (explain why it is true). Now $\frac{1}{6}$ $\frac{1}{G}$ $\sum_{\alpha \in G}$ $\sum_{g \in G} \chi_i(g) = \frac{1}{G} \sum_{g \in G}$ $\sum_{g \in G} \chi_j(hg) = \dots$

(c) (5 pts) *Let* $\delta_g : G \to \mathbb{C}$ *be the delta function of element* $g \in G$ *, i.e.*

$$
\delta_g(h)=\begin{cases} 1, \ \ h=g \\ 0, \ \ h\neq g. \end{cases}
$$

Check that $DFT(\delta_i) = \chi_i$ *.*

(d) (5 *pts)* Let $\mathbb{C}[G]$ *be the space of functions on* G. A natural basis is given by the delta functions $\{\delta_g \mid g \in G\}$. Show *that the character functions* $\{x_i | i \in \mathbb{Z}/n\mathbb{Z}\}$ *form an orthonormal basis in* $\mathbb{C}[G]$ *with respect to the inner product* $\langle \cdot, \cdot \rangle$ *defined in the beginning of this problem.*[5](#page-2-0)

Remark 3. The group G naturally acts on its space of functions. Let $f \in \mathbb{C}[G]$ be a function and $h \in G$ an element, then the action of h on f is given via

$$
(\mathsf{h} \cdot \mathsf{f})(\mathsf{g}) := \mathsf{f}(\mathsf{h}^{-1}\mathsf{g}).
$$

Problem 3. *(*10 *pts) Show that each character* χⁱ *is an eigenvector with respect to this action. In other words*

$$
(h \cdot \chi_i)(g) = \lambda(h)\chi_i(g)
$$

for some $\lambda(h) \in \mathbb{C}^*$.

 5 **Hint:** use that DFT is invertible together with the results in (c) and (b).

Group structure on elliptic curve

Let \mathbb{P}^2 be the set of all one-dimensional subspaces (lines through the origin) in a three-dimensional vector space. The points on \mathbb{P}^2 are defined by three coordinates up to simultaneous rescaling and denoted by $p = [x : y : z]$. As $[x : y : z] \sim$ [tx : ty : tz] give rise to the same point in \mathbb{P}^2 (define the same line through the origin) for any $t \neq 0$, it only makes sense to work with homogeneous polynomials (all monomials have the same degree) in x, y and z. Let $E : \{ [x : y : z] \in \mathbb{P}^2 \mid y^2z = 1 \}$ $x^3 + axz^2 + bz^3$ $\subset \mathbb{P}^2$ be an elliptic curve.

Remark 4. In class (see 'LecturesOnEllipticCurves.pdf' file) we 'looked' at the elliptic curve away from the line $\{z = 0\}$ \mathbb{P}^2 , i.e. on the open subset $U_{z\neq0} = \mathbb{P}^2 \setminus \{z=0\}$. As each point $[x:y:z] \in U_{z\neq0}$ is equivalent to $\frac{1}{z}[x:y:z] = \left[\frac{x}{z} : \frac{y}{z}\right]$ $\frac{5}{z}$: 1], the defining equation of E becomes $y^2 = x^3 + ax + b$ (we simply put $z = 1$).

Remark 5. The set \mathbb{P}^2 is called a **projective plane**. Analogously one can define a projective space of any dimension.

Next consider the set of **finite** expressions (formal sums) $P := \{ \sum_{n=1}^{\infty} a_n \mid n \in \mathbb{Z} \}$ $\sum_{P \in E} n_P P \mid n_P \in \mathbb{Z}$ with a free abelian group structure.

Definition 6. A formal sum $D = \sum$ $\sum_{P \in E} n_P P \in \mathcal{P}$ as above is called a **divisor**. The **degree** of a divisor D is the integer $deg(D) = \sum n_p$.

Example 7. Let P, Q, R, S be some points on E and consider the divisors $D_1 = 2P - 3Q + 4S$ and $D_2 = P + R - 3S$. Then the divisor $D_3 = 2D_2 - D_1$ is $D_3 = 2D_2 - D_1 = 2P + 2R - 6S - (2P - 3Q + 4S) = 2R - 10S + 3Q$ and the degree of D₁ is deg(D₁) = $2-3+4=3$.

Problem 4. We will work with the elliptic curve $E: Y^2 = X(X+1)(X+4)$. Let $\bullet = (-4,0)$ and $\bullet \bullet = (-2,2)$ be two *points on* E*.*

- (a) (5 *pts)* Consider the divisors D₁ = 3 $+$ 5 $+$ 5(-1, 0) and D₂ = 2 $+$ 5+ $-$ 2(1, $\sqrt{10}$) and find (1) D₁ + 2D₂ =
	- (2) 3D₁ D₂ =
- *(b) (*5 *pts)*
	- (1) $deg(D_1) =$
	- (2) *deg*(D₂) =
	- (3) $deg(D_1 + 2D_2) =$
	- (4) $deg(3D_1 D_2) =$
- *(c)* (5 *pts)* Show that in general for any two divisors $D, D' \in \mathcal{P}$ one has $deg(D + D') = deg(D) + deg(D')$. In other *words, the map*

$$
deg: \mathcal{P} \to \mathbb{Z}
$$

is a group homomorphism.

We will work with the subset $\mathcal{P}^0 \subset \mathcal{P}$, which consists of degree 0 elements.

Remark 8. Notice that \mathcal{P}^0 is the kernel of the homomorphism deg, hence, a subgroup of \mathcal{P} .

Let ∼ be an equivalence relation on \mathcal{P}^0 generated by

 $P_1 + P_2 + P_3 \sim Q_1 + Q_2 + Q_3$

iff P_1 , P_2 , $P_3 \in \ell_1$ and Q_1 , Q_2 , $Q_3 \in \ell_2$ for some lines ℓ_1 and ℓ_2 . Let $\mathcal O$ be the point $[0:1:0]$.

Remark 9. This is the 'mysterious' point that we did not explicitly define in class, since it is 'hidden' on the line $\{z = 0\}$ \mathbb{P}^2 , which we did not 'see' on $U_{z\neq 0}$.

Problem 6. Let
$$
D = \sum_{P \in E} n_P P \in \mathcal{P}^0
$$
.
\n(a) (5 pts) Show that $D \sim \widetilde{D} = \left(\sum_{Q \in E} n_q Q\right) - m\mathcal{O}$ with $n_q \in \mathbb{Z}_{>0}$ and $m = -\sum n_q$.

(b) *(*10 *pts) Show by induction on* $n = \sum n_q$ *that* $\widetilde{D} \sim P - \mathcal{O}$.^{[8](#page-5-2)}

Remark 10. Let G_E be the group \mathcal{P}^0/\sim . We have established a surjection of sets

$$
\varphi : E \to G_E
$$

$$
\varphi(P) = P - \mathcal{O}.
$$

It can be shown that φ is one-to-one^{[9](#page-5-3)} and, thus an isomorphism. Therefore the elliptic curve has a group structure G_E .

⁶Hint: let $f(x)$ be the restriction of the defining equation of E to the line $z = 0$ and check that $f(0) = f'(0) = f''(0) = 0$.

⁷Hint: if $n_P < 0$, consider the line ℓ through the points P and R = ⊖P, then P + R + $\mathcal{O} \sim 3\mathcal{O}...$

⁸Hint: for the induction step, draw a line ℓ through two points Q_1 and Q_2 with nonzero coefficients in \widetilde{D} (or a tangent line to a point Q with $n_Q \ge 2$) and use that $Q_1 + Q_2 + R \sim R + (\ominus R) + \mathcal{O}$ (or $2Q + R \sim R + (\ominus R) + \mathcal{O}$), where R is the third point in E ∩ ℓ.

⁹Not so hard to show, but requires a bit of knowledge in Algebraic Geometry, so we will skip that part.

Use the programs at <http://tsvboris.pythonanywhere.com/IntrotoCryptography> to solve problems in the next two sections.

MV-ElGamal cryptosystem

Problem 7. *We will work with the MV-ElGamal cryptosystem (see page* 4 *of 'Lecture* 19*' notes).*

(a) (10 pts) Sherlock knows the elliptic curve E and the ciphertext values $C_1 = \alpha_1 S_x^{AB}$ and $C_2 = \alpha_2 S_y^{AB}$. Show how *he can use this knowledge to write down a polynomial equation (modulo* p*) that relates the two parts of the plaintext message* (α_1 *and* α_2).

(b) (10 pts) Alice and Bob exchange a message using MV-ElGamal cryptosystem with elliptic curve $E : y^2 = x^3 +$ $7x - 3$ *over* \mathbb{F}_{1223} *, with the chosen point* $P = (11, 216)$ *. They use the correspondence* A ↔ 1, B ↔ 2, ..., Z ↔ 26 *to transform their text message into a plaintext* $m \in \mathbb{F}_{1223}$ *. Sherlock intercepts the message* (Q_B, C_1, C_2) = ((1086, 292), 37, 681) *that Bob sent to Alice. Moreover, Watson has found out and told Sherlock that the first part of the plaintext is* $\alpha_1 \equiv 89 \leftrightarrow HI$. Use your answer to part (a) to recover the second part α_2 of the plaintext and the *whole message* $m = m_1 || m_2$.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is presented below (Samantha signs a document and Victor verifies the signature):

Step 1. Public Parameter Creation

A trusted party chooses a finite field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p , and a point $P \in E(\mathbb{F}_p)$ of large prime order q, i.e. $qP = \mathcal{O}$, where $\mathcal O$ is the identity element.

Step 2. Key Creation

Samantha chooses a secret signing key $1 < n_S < q - 1$, computes $V = n_S P \in E(\mathbb{F}_p)$ and publishes the verification key V.

Step 3. Signing

Samantha chooses a document, i.e. a number $D \pmod{q}$ and an ephemeral key e $pmod{q}$. Then she computes $eP \in E(\mathbb{F}_p)$, followed by

 $s_1 \equiv x(eP) \pmod{q}$ and

 $s_2 \equiv (D + n_S s_1)e^{-1} \pmod{q}.$

Samantha publishes the signature (s_1, s_2) .

Step 4. Verification

Victor finds $v_1 \equiv Ds_2^{-1} \pmod{q}$ and $v_2 \equiv s_1 s_2^{-1} \pmod{q}$. He computes $v_1 P + v_2 V \in E(\mathbb{F}_p)$ and verifies that $x(v_1P + v_2V) \equiv s_1 \pmod{q}.$

Problem 8. *(*10 *pts) Prove that ECDSA works, i.e., check that the verification step succeeds in verifying a valid signature.*[10](#page-7-0)

Problem 9. *This problem asks you to compute some numerical instances of ECDSA described above for the public parameters* $E: Y^2 = X^3 + 231X + 473$, $p = 17389$, $q = 1321$, $P = (11259, 11278) \in E(\mathbb{F}_p)$. *You should begin by verifying that* P *is a point of order* q *in* $E(\mathbb{F}_p)$ *.*

*(a) (*10 *pts) Samantha's private signing key is* s = 542*. What is her public verification key* V*? What is her digital signature* (s_1, s_2) *on the document* $d = 644$ *using the ephemeral key* $e = 847$?

(b) (10 *pts)* Tabitha's public verification key is $V = (11017, 14637)$. Is $(s_1, s_2) = (907, 296)$ *a valid signature on the document* d = 993*?* [11](#page-7-1)

A bit more on elliptic curves

Definition 11. Let p be an odd prime number. An integer k is a **quadratic residue** modulo p if it is congruent to a perfect square modulo p (there exists $1 \le a \le p-1$ with $k \equiv a^2 \pmod{p}$) and is a quadratic nonresidue modulo p otherwise. The Legendre symbol is a function of k and p defined as

$$
\left(\frac{k}{p}\right) := \begin{cases} 1, k \text{ is a quadratic residue modulo } p \\ -1, k \text{ is a quadratic nonresidue modulo } p \\ 0, k \equiv 0 \pmod{p}. \end{cases}
$$

¹⁰Hint: you need to check that $x(v_1P + v_2V) \equiv s_1 \mod q$, which is straightforward: $x(v_1P + v_2V) \equiv x(Ds_2^{-1}P + s_1s_2^{-1}n_sP) \equiv \dots$

¹¹Hint: see Step 4.

An equivalent definition (Legendre's original way) is

$$
\left(\frac{k}{p}\right) \equiv k^{(p-1)/2} \; (\text{mod } p).
$$

The Legendre symbol is a multiplicative function with respect to its top argument:

$$
\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right)\left(\frac{b}{p}\right).
$$

Problem 10. *(a) (*5 *pts) Use Legendre's definition to show that*

$$
\left(\frac{-1}{p}\right)=\begin{cases}1, p\equiv 1\ (mod\ 4)\\-1, p\equiv 3\ (mod\ 4)\end{cases}
$$

*(b) (*10 *pts) Show that there are* $p + 1$ *points on the elliptic curve over* \mathbb{F}_p *given by* $y^2 = x^3 - x$ *with* $p \equiv 3 \pmod{4}$.^{[12](#page-8-0)}

Problem 11. Let E be an elliptic curve with the equation $y^2 = x^3 + ax + b$.

(a) (10 pts) Show that if the equation $x^3 + ax + b$ splits into linear factors modulo p *(in other words* $x^3 + ax + b \equiv$ $(x - \alpha)(x - \beta)(x - \gamma)$ (*mod* p) *for some* α, β *and* $\gamma \in \mathbb{F}_p$ *), then the group* $G(E)$ *is not cyclic.*

(b) (5 pts) If the cubic polynomial $x^3 + ax + b$ has a root modulo p, then the number of elements on E over \mathbb{F}_p is even.

¹²**Hint:** let $f(x) = x^3 - x$ and $a \in \mathbb{F}_p^*$, compare the Legendre symbols $\begin{pmatrix} f(a) \\ n \end{pmatrix}$ p) and $\left(\frac{f(-a)}{a}\right)$ p .

Grover's algorithm

Problem 12. Let $f : \mathbb{B}^2 \to \mathbb{B}$ be the function given by

$$
f(|x_1x_2\rangle)=\begin{cases} |0\rangle, & |x_1x_2\rangle\neq |11\rangle\\ |1\rangle, & |x_1x_2\rangle=|11\rangle.\end{cases}
$$

(a) (5 *pts)* Using NOT, CNOT, CCNOT gates, draw a circuit for the oracle \mathcal{O}_f with $\mathcal{O}_f(|i\rangle|-\rangle) = (-1)^{f(i)}|i\rangle|-\rangle$ (the *input state is* $|x_1\rangle$, $|x_2\rangle$, $|-\rangle$ *).*

(b) *(*5 *pts) Let* R *be the reflection with respect to* |00⟩ *i.e.*

$$
R(|i\rangle|-\rangle)=\begin{cases} |i\rangle|-\rangle, & i\neq 00 \\ -|00\rangle|-\rangle, & i=00. \end{cases}
$$

Using NOT *and* CCNOT *gates, draw a circuit for* −R*.* [13](#page-9-0)

(c) (5 pts) Draw a circuit for Grover diffusion operator $G = H^{\otimes 2}(-R)H^{\otimes 2}\mathcal{O}_f$ (the operators in the circuit are applied *from left to right).*

¹³It is easier to construct a circuit for $-R$. As the images of the same state vector after application of R and $-R$ differ by a global phase change (multiplication by −1 in this case), such vectors are equivalent.

(d) *(*5 *pts) Draw a complete circuit realizing Grover's algorithm (starting with all qubits and ancilla qubits in state* |0⟩*) with* m = 1 *iteration and find the resulting state vector prior to the measurement (show steps).*