Spring 2022
MATH 1800: Quantum Information Theory with Applications to Cryptography
Take-Home Exam

Definition 1. A subset X C S' is called dense if for any ¢ > 0 and any point p € S’ there is a point x € X on the open arc
of length 2¢ centered at p.
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Problem 1. Let A := e*® € S! be a point on the unit circle and consider the subset of points Xn = {A}nez =

(A2 AT T A2, C ST

(a) (5 pts) Show that X, is finite if and only if @ = %7‘[ withp, q € Z.!

(b) (10 pts) Show that if the set X is infinite, then for any ¢ > 0, there exist two points x1,x2 € X, with the distance
d(X],Xz) <e?

IHint: ein1@ — ein2e o eilni—nzle — 1 — g2kni |
2Hint: what is the maximal number of points on the unit circle with the distance between any pair at least ¢?



(c) (10 pts) Show that if X is infinite, then it is a dense subset of S'.3

Characters and DFT

Definition 2. Let G be a finite abelian group and C* = {z € C | z # 0} the multiplicative group of nonzero complex
numbers. A character of G is a homomorphism x : G — C*. Recall, that a map ¥ is a group homomorphism provided
x(gh) = x(g)x(h).

Henceforth in this section we assume G = Z/nZ. Let w = e2™/™ be the primitive n" root of unity and X;j the character
given by x;(1) = w’.

Problem 2. Define a Hermitian inner product on characters via

1
() =g D xil9)x(9)-
geG

(a) (5 pts) Let x be a character. Show that*

(b) (5 pts) Verify that

1, i=j
(XiryXj) {o, -

3Hint: let x; = A™,x, = A"2 € X;, be two points with d(x7,x2) < &, then the point A™1 ~™2 is on distance at most ¢ from O = A® = (1,0). Now
lett = n; — n, and take a look at the subset {...,A~2t, A=t 1, At A2t} C X5 C ST.
“Hint: let h € G be an element and notice the equality of sets {hglgec =1{9}gec = G. in other words action by h on the left is a bijective map from

1 1
G to itself (explain why it is true). Now — >~ xi(g) = = > x;j(hg) =...
G geG G geG



(c) (5pts)Let by : G — C be the delta function of element g € G, i.e.

1, h=
Sg(h) = {o h# 3

Check that DFT(6;) = Xi.

(d) (5 pts) Let C[G] be the space of functions on G. A natural basis is given by the delta functions {84 | g € G}. Show
that the character functions {xi |1 € Z/nZ} form an orthonormal basis in C[G] with respect to the inner product (-, -)
defined in the beginning of this problem.’

Remark 3. The group G naturally acts on its space of functions. Let f € C[G] be a function and h € G an element, then the

action of h on f is given via
(h-f)(g) =f(h~"g).

Problem 3. (10 pts) Show that each character X is an eigenvector with respect to this action. In other words
(h-xi)(g) = A(h)xi(g)

for some A(h) € C*.

SHint: use that DFT is invertible together with the results in (c) and (b).



Group structure on elliptic curve

Let P2 be the set of all one-dimensional subspaces (lines through the origin) in a three-dimensional vector space. The
points on P2 are defined by three coordinates up to simultaneous rescaling and denoted by p = [x :y : z]. As[x 1y : z] ~
[tx : ty : tz] give rise to the same point in P? (define the same line through the origin) for any t # 0, it only makes sense to
work with homogeneous polynomials (all monomials have the same degree) in x,y and z. Let E : {[x : y : z] € P? |y?z =
x3 + axz? + bz3} C P? be an elliptic curve.

Remark 4. In class (see "LecturesOnEllipticCurves.pdf” file) we "looked” at the elliptic curve away from the line {z = 0} C
P2, i.e. on the open subset U, 2o = P2\ {z = 0}. As each point [x : y : z] € U, is equivalent to %[x (y:zl = [z : % 1]

s

the defining equation of E becomes y? = x> + ax + b (we simply put z = 1).
Remark 5. The set P? is called a projective plane. Analogously one can define a projective space of any dimension.

Next consider the set of finite expressions (formal sums) P :={ }_ npP | n, € Z} with a free abelian group structure.
PEE

Definition 6. A formal sum D = 3 n,P € P as above is called a divisor. The degree of a divisor D is the integer
PEE
deg(D) =3 n,.

Example 7. Let P, Q, R, S be some points on E and consider the divisors D; = 2P —3Q +4S and D, = P 4+ R — 3S. Then
the divisor D3 = 2D, — D is D3 =2D,; — Dy =2P + 2R —6S — (2P —3Q +4S) = 2R — 10S + 3Q and the degree of
D;isdeg(Dy)=2—-3+4=3.
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Problem 4. We will work with the elliptic curve E : Y> = X(X 4+ 1)(X +4). Let ‘% = (—4,0) and %ﬁ = (—2,2) be two

points on E.

(a) (5 pts) Consider the divisors D1 = 3‘% — 5%% +3(—1,0) and D, = 2% + %@ —2(1,4/10) and find
‘&S 'S8

(1) Dy +2D; =
(2) 3D1 —Dy =
(b) (5 pts)

(1) deg(D1) =

(2) deg(D2) =

(3) deg(Dy +2D3) =

(4) deg(3D7 —D3) =

(c) (5 pts) Show that in general for any two divisors D,D’ € P one has deg(D + D’) = deg(D) + deg(D’). In other
words, the map
deg: P — 7

is a group homomorphism.

We will work with the subset P° C P, which consists of degree O elements.
Remark 8. Notice that PP° is the kernel of the homomorphism deg, hence, a subgroup of P.

Let ~ be an equivalence relation on P° generated by

P1+P24+P3~Q1+Q2+Q3

iff P1,P2,P3 € {1 and Qq, Q2, Q3 € {, for some lines £; and £,.
Let O be the point [0: 1:0].

Remark 9. This is the *mysterious’ point that we did not explicitly define in class, since it is "hidden’ on the line {z = 0} C
P2, which we did not "see’” on U, 4.



Problem 5. (5 pts) Show that the line z = 0 intersects E only at O, but with multiplicity 3. ©

Problem 6. LetD = 5 m,P € P°.
PEE

(a) (5 pts) Show that D ~ D= > ngQ | —mOwithng € Zogandm =—3 ng.’
Q€E

(b) (10 pts) Show by induction onm = ) _ngq that D~P-0.8

Remark 10. Let Gg be the group P°/_.. We have established a surjection of sets

¢:E— Gg
e(P)=P-0.

It can be shown that ¢ is one-to-one’ and, thus an isomorphism. Therefore the elliptic curve has a group structure Gg.

SHint: let f(x) be the restriction of the defining equation of E to the line z = 0 and check that f(0) = f/(0) = f”/(0) = 0.

"Hint: if np < 0, consider the line £ through the points P and R = ©P, then P + R+ O ~ 30...

8Hint: for the induction step, draw a line £ through two points Q7 and Q, with nonzero coefficients in D (or a tangent line to a point Q with ng >2)
and use that Q1 + Q2 + R~ R+ (SR) + O (or 2Q + R ~ R+ (&R) + O), where R is the third point in E N £.

Not so hard to show, but requires a bit of knowledge in Algebraic Geometry, so we will skip that part.



Use the programs at http://tsvboris.pythonanywhere.com/IntrotoCryptography to solve problems
in the next two sections.

MV-ElGamal cryptosystem

Problem 7. We will work with the MV-ElGamal cryptosystem (see page 4 of ’Lecture 19’ notes).

(a) (10 pts) Sherlock knows the elliptic curve E and the ciphertext values C1 = 1 S2B and C; = cszQB. Show how
he can use this knowledge to write down a polynomial equation (modulo p) that relates the two parts of the plaintext
message (x1 and «2).

(b) (10 pts) Alice and Bob exchange a message using MV-EIGamal cryptosystem with elliptic curve E : y2 = x> +
7x — 3 over F1223, with the chosen point P = (11,216). They use the correspondence A < 1,B < 2,...,Z &
26 to transform their text message into a plaintext m € Fi323. Sherlock intercepts the message (Qp,Cq,Cz) =
((1086,292),37,681) that Bob sent to Alice. Moreover, Watson has found out and told Sherlock that the first part of
the plaintext is 0y = 89 < HI. Use your answer to part (Q) to recover the second part &, of the plaintext and the
whole message m = mq||m,.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The Elliptic Curve Digital Signature Algorithm (ECDSA) is presented below (Samantha signs a document and Victor
verifies the signature):
Step 1. Public Parameter Creation

A trusted party chooses a finite field IF},, an elliptic curve E/IF,, and a point P € E(F;,) of large prime order q, i.e.
gqP = O, where O is the identity element.

Step 2. Key Creation

Samantha chooses a secret signing key 1 < ns < ¢ — 1, computes V = nsP € E(F,,) and publishes the verification
key V.

Step 3. Signing

Samantha chooses a document, i.e. a number D (mod q) and an ephemeral key e (mod q). Then she computes
eP € E(FF,), followed by

s1 = x(eP) (mod q) and


http://tsvboris.pythonanywhere.com/IntrotoCryptography

s2 = (D +nssy)e”! (mod q).

Samantha publishes the signature (s7,s2).

Step 4. Verification
Victor finds vi = Dsz_1 (mod q) and v; = s s;‘ (mod q). He computes viP + v,V € E(F},) and verifies that
x(viP+v,V) = s (mod q).

Problem 8. (10 pts) Prove that ECDSA works, i.e., check that the verification step succeeds in verifying a valid signature.'”

Problem 9. This problem asks you to compute some numerical instances of ECDSA described above for the public parameters
E: Y2 =X34231X+473,p = 17389,q = 1321,P = (11259,11278) ¢ E(F, ). You should begin by verifying that P is a
point of order q in E(Fyp).
(a) (10 pts) Samantha’s private signing key is s = 542. What is her public verification key V? What is her digital signature
(s1,82) on the document d = 644 using the ephemeral key e = 8477

(b) (10 pts) Tabitha’s public verification key is V. = (11017,14637). Is (s1,s2) = (907,296) a valid signature on the
document d = 9932"!

A bit more on elliptic curves

Definition 11. Let p be an odd prime number. An integer k is a quadratic residue modulo p if it is congruent to a perfect
square modulo p (there exists 1 < a < p — 1 with k = a? (mod p)) and is a quadratic nonresidue modulo p otherwise. The
Legendre symbol is a function of k and p defined as

K 1,k is a quadratic residue modulo p
() := ¢ —1,k is a quadratic nonresidue modulo p
P 0,k = 0 (mod p).

10Hint: you need to check that x(v1P 4+ v2V) = s7 mod q, which is straightforward: x(v;P +v,V) = X(DS;] P+ sq sz_]ns P)=...
I'Hint: see Step 4.



An equivalent definition (Legendre’s original way) is

<];> = k(P=1/2 (mod p).

The Legendre symbol is a multiplicative function with respect to its top argument:

#)-()¢)

Problem 10. (a) (5 pts) Use Legendre’s definition to show that

(—1) _Jhp=1(mod4)
P/ —1,p = 3 (mod 4)

(b) (10 pts) Show that there are p + 1 points on the elliptic curve over IF, given by y? =x3 —x withp = 3 (mod 4)."*

Problem 11. Let E be an elliptic curve with the equation y*> = x> + ax + b.

(a) (10 pts) Show that if the equation x> + ax + b splits into linear factors modulo p (in other words x> 4+ ax +b =
(x = &) (x = B)(x — ) (mod p) for some o, 3 andy € Fy,), then the group G(E) is not cyclic.

(b) (5 pts) If the cubic polynomial x> + ax + b has a root modulo p, then the number of elements on E over F, is even.

f f(—
2Hint: let f(x) =x3 —xand a € I, compare the Legendre symbols (ﬂ) and ( (Za) >
P



Grover’s algorithm

Problem 12. Let f : B> — B be the function given by

0), Ixix2) #11)

f(xix2)) = {I1>> x1x2) = [11).

(a) (5 pts) Using NOT, CNOT, CCNOT gates, draw a circuit for the oracle O¢ with O¢([)|—)) = (=1)W[R)|-) (the
input state is |x1),x2),|—)).

(b) (5 pts) Let R be the reflection with respect to |00) i.e.

L JIE, 00
R(i)-)) = {|00>|>, o

Using NOT and CCNOT gates, draw a circuit for —R.'?

(¢) (5 pts) Draw a circuit for Grover diffusion operator G = H®?(—R)H®2Os (the operators in the circuit are applied
from left to right).

131t is easier to construct a circuit for —R. As the images of the same state vector after application of R and —R differ by a global phase change
(multiplication by —1 in this case), such vectors are equivalent.

10



(d) (5 pts) Draw a complete circuit realizing Grover’s algorithm (starting with all qubits and ancilla qubits in state |0))
with m = 1 iteration and find the resulting state vector prior to the measurement (show steps).
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