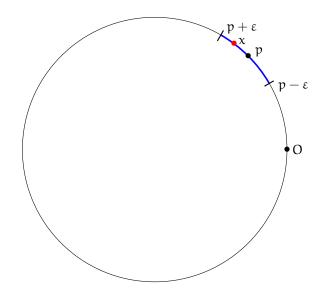
Take-Home Exam

Definition 1. A subset $X \subset S^1$ is called **dense** if for any $\varepsilon > 0$ and any point $p \in S^1$ there is a point $x \in X$ on the open arc of length 2ε centered at p.



Problem 1. Let $\lambda := e^{i\varphi} \in S^1$ be a point on the unit circle and consider the subset of points $X_{\lambda} := {\lambda^n}_{n \in \mathbb{Z}} = {\ldots, \lambda^{-2}, \lambda^{-1}, 1, \lambda, \lambda^2, \ldots} \subset S^1$.

(a) (5 pts) Show that X_{λ} is finite if and only if $\phi = \frac{p}{q}\pi$ with $p, q \in \mathbb{Z}$.¹

(b) (10 pts) Show that if the set X_{λ} is infinite, then for any $\varepsilon > 0$, there exist two points $x_1, x_2 \in X_{\lambda}$ with the distance $d(x_1, x_2) < \varepsilon^2$.

¹**Hint:** $e^{in_1 \varphi} = e^{in_2 \varphi} \Leftrightarrow e^{i(n_1 - n_2)\varphi} = 1 = e^{2k\pi i} \dots$

²**Hint:** what is the maximal number of points on the unit circle with the distance between any pair at least ε ?

Characters and DFT

Definition 2. Let G be a finite abelian group and $\mathbb{C}^* = \{z \in \mathbb{C} \mid z \neq 0\}$ the multiplicative group of nonzero complex numbers. A character of G is a homomorphism $\chi : G \to \mathbb{C}^*$. Recall, that a map χ is a group homomorphism provided $\chi(\mathbf{g}\mathbf{h}) = \chi(\mathbf{g})\chi(\mathbf{h}).$

Henceforth in this section we assume $G = \mathbb{Z}/n\mathbb{Z}$. Let $\omega = e^{2\pi i/n}$ be the primitive n^{th} root of unity and χ_j the character given by $\chi_i(1) = \omega^j$.

Problem 2. Define a Hermitian inner product on characters via

$$\langle \chi_i, \chi_j \rangle := \frac{1}{G} \sum_{g \in G} \chi_i(g) \overline{\chi_j(g)}.$$

(a) (5 *pts*) Let χ be a character. Show that⁴

$$\frac{1}{G}\sum_{g\in G}\chi_j(g) = \begin{cases} 1, & j=0\\ 0, & j\neq 0 \end{cases}$$

(b) (5 pts) Verify that

$$\langle \chi_i, \chi_j
angle = egin{cases} 1, & i=j \ 0, & i
eq j. \end{cases}$$

 $[\]overline{{}^{3}\text{Hint: let } x_{1} = \lambda^{n_{1}}, x_{2} = \lambda^{n_{2}} \in X_{\lambda} \text{ be two points with } d(x_{1}, x_{2}) < \varepsilon, \text{ then the point } \lambda^{n_{1}-n_{2}} \text{ is on distance at most } \varepsilon \text{ from } O = \lambda^{0} = (1, 0). \text{ Now } let t = n_{1} - n_{2} \text{ and take a look at the subset } {\dots, \lambda^{-2t}, \lambda^{-t}, 1, \lambda^{t}, \lambda^{2t}, \dots} \subset X_{\lambda} \subset S^{1}.$ ${}^{4}\text{Hint: let } h \in G \text{ be an element and notice the equality of sets } \{hg\}_{g \in G} = \{g\}_{g \in G} = G, \text{ in other words action by } h \text{ on the left is a bijective map from } G \text{ to itself (explain why it is true). Now } \frac{1}{G} \sum_{g \in G} \chi_{i}(g) = \frac{1}{G} \sum_{g \in G} \chi_{j}(hg) = \dots$

(c) (5 pts) Let $\delta_g : G \to \mathbb{C}$ be the delta function of element $g \in G$, i.e.

$$\delta_{g}(h) = \begin{cases} 1, & h = g \\ 0, & h \neq g \end{cases}$$

Check that $DFT(\delta_i) = \chi_i$.

(d) (5 pts) Let $\mathbb{C}[G]$ be the space of functions on G. A natural basis is given by the delta functions $\{\delta_g \mid g \in G\}$. Show that the character functions $\{\chi_i \mid i \in \mathbb{Z}/n\mathbb{Z}\}$ form an orthonormal basis in $\mathbb{C}[G]$ with respect to the inner product $\langle \cdot, \cdot \rangle$ defined in the beginning of this problem.⁵

Remark 3. The group G naturally acts on its space of functions. Let $f \in \mathbb{C}[G]$ be a function and $h \in G$ an element, then the action of h on f is given via

$$(\mathbf{h} \cdot \mathbf{f})(\mathbf{g}) := \mathbf{f}(\mathbf{h}^{-1}\mathbf{g}).$$

Problem 3. (10 pts) Show that each character χ_i is an eigenvector with respect to this action. In other words

$$(\mathbf{h} \cdot \boldsymbol{\chi}_{\mathbf{i}})(\mathbf{g}) = \lambda(\mathbf{h})\boldsymbol{\chi}_{\mathbf{i}}(\mathbf{g})$$

for some $\lambda(h) \in \mathbb{C}^*$ *.*

⁵Hint: use that DFT is invertible together with the results in (c) and (b).

Group structure on elliptic curve

Let \mathbb{P}^2 be the set of all one-dimensional subspaces (lines through the origin) in a three-dimensional vector space. The points on \mathbb{P}^2 are defined by three coordinates up to simultaneous rescaling and denoted by p = [x : y : z]. As $[x : y : z] \sim [tx : ty : tz]$ give rise to the same point in \mathbb{P}^2 (define the same line through the origin) for any $t \neq 0$, it only makes sense to work with homogeneous polynomials (all monomials have the same degree) in x, y and z. Let $E : \{[x : y : z] \in \mathbb{P}^2 \mid y^2 z = x^3 + axz^2 + bz^3\} \subset \mathbb{P}^2$ be an elliptic curve.

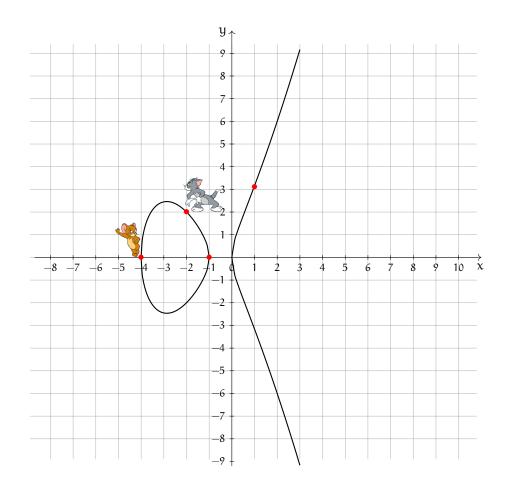
Remark 4. In class (see 'LecturesOnEllipticCurves.pdf' file) we 'looked' at the elliptic curve away from the line $\{z = 0\} \subset \mathbb{P}^2$, i.e. on the open subset $U_{z\neq 0} = \mathbb{P}^2 \setminus \{z = 0\}$. As each point $[x : y : z] \in U_{z\neq 0}$ is equivalent to $\frac{1}{z}[x : y : z] = [\frac{x}{z} : \frac{y}{z} : 1]$, the defining equation of E becomes $y^2 = x^3 + ax + b$ (we simply put z = 1).

Remark 5. The set \mathbb{P}^2 is called a **projective plane**. Analogously one can define a projective space of any dimension.

Next consider the set of **finite** expressions (formal sums) $\mathcal{P} := \{\sum_{P \in E} n_P P \mid n_p \in \mathbb{Z}\}$ with a free abelian group structure.

Definition 6. A formal sum $D = \sum_{P \in E} n_p P \in \mathcal{P}$ as above is called a **divisor**. The **degree** of a divisor D is the integer $deg(D) = \sum n_p$.

Example 7. Let P, Q, R, S be some points on E and consider the divisors $D_1 = 2P - 3Q + 4S$ and $D_2 = P + R - 3S$. Then the divisor $D_3 = 2D_2 - D_1$ is $D_3 = 2D_2 - D_1 = 2P + 2R - 6S - (2P - 3Q + 4S) = 2R - 10S + 3Q$ and the degree of D_1 is deg $(D_1) = 2 - 3 + 4 = 3$.



Problem 4. We will work with the elliptic curve $E: Y^2 = X(X + 1)(X + 4)$. Let $\P = (-4, 0)$ and $\P = (-2, 2)$ be two points on E.

- (a) (5 pts) Consider the divisors $D_1 = 3$ -5 + 3(-1,0) and $D_2 = 2$ $+ 2(1,\sqrt{10})$ and find (1) $D_1 + 2D_2 =$
 - (2) $3D_1 D_2 =$

(b) (5 pts)

(1) $deg(D_1) =$

(2) $deg(D_2) =$

(3) $deg(D_1 + 2D_2) =$

- (4) $deg(3D_1 D_2) =$
- (c) (5 pts) Show that in general for any two divisors $D, D' \in \mathcal{P}$ one has deg(D + D') = deg(D) + deg(D'). In other words, the map

 $deg: \mathcal{P} \to \mathbb{Z}$

is a group homomorphism.

We will work with the subset $\mathcal{P}^0 \subset \mathcal{P}$, which consists of degree 0 elements.

Remark 8. Notice that \mathcal{P}^0 is the kernel of the homomorphism deg, hence, a subgroup of \mathcal{P} .

Let ~ be an equivalence relation on \mathcal{P}^0 generated by

 $\mathsf{P}_1+\mathsf{P}_2+\mathsf{P}_3\sim Q_1+Q_2+Q_3$

iff $P_1, P_2, P_3 \in \ell_1$ and $Q_1, Q_2, Q_3 \in \ell_2$ for some lines ℓ_1 and ℓ_2 . Let \mathcal{O} be the point [0:1:0].

Remark 9. This is the 'mysterious' point that we did not explicitly define in class, since it is 'hidden' on the line $\{z = 0\} \subset \mathbb{P}^2$, which we did not 'see' on $U_{z\neq 0}$.

Problem 6. Let
$$D = \sum_{P \in E} n_p P \in \mathcal{P}^0$$
.
(a) (5 pts) Show that $D \sim \widetilde{D} = \left(\sum_{Q \in E} n_q Q\right) - \mathfrak{m}\mathcal{O}$ with $n_q \in \mathbb{Z}_{>0}$ and $\mathfrak{m} = -\sum n_q$.⁷

(b) (10 pts) Show by induction on $n=\sum n_q$ that $\widetilde{D}\sim P-\mathcal{O}.$ 8

Remark 10. Let G_E be the group $\mathcal{P}^0/_{\sim}$. We have established a surjection of sets

$$\varphi: \mathsf{E} \to \mathsf{G}_{\mathsf{E}}$$
$$\varphi(\mathsf{P}) = \mathsf{P} - \mathcal{O}.$$

It can be shown that ϕ is one-to-one⁹ and, thus an isomorphism. Therefore the elliptic curve has a group structure G_E.

⁶**Hint:** let f(x) be the restriction of the defining equation of E to the line z = 0 and check that f(0) = f'(0) = f''(0) = 0.

⁷**Hint:** if $n_P < 0$, consider the line ℓ through the points P and $R = \ominus P$, then $P + R + \mathcal{O} \sim 3\mathcal{O}$...

⁸**Hint:** for the induction step, draw a line ℓ through two points Q_1 and Q_2 with nonzero coefficients in \widetilde{D} (or a tangent line to a point Q with $n_Q \ge 2$) and use that $Q_1 + Q_2 + R \sim R + (\ominus R) + \mathcal{O}$ (or $2Q + R \sim R + (\ominus R) + \mathcal{O}$), where R is the third point in $E \cap \ell$.

⁹Not so hard to show, but requires a bit of knowledge in Algebraic Geometry, so we will skip that part.

Use the programs at http://tsvboris.pythonanywhere.com/IntrotoCryptography to solve problems in the next two sections.

MV-ElGamal cryptosystem

Problem 7. We will work with the MV-ElGamal cryptosystem (see page 4 of 'Lecture 19' notes).

(a) (10 pts) Sherlock knows the elliptic curve E and the ciphertext values $C_1 = \alpha_1 S_x^{AB}$ and $C_2 = \alpha_2 S_y^{AB}$. Show how he can use this knowledge to write down a polynomial equation (modulo p) that relates the two parts of the plaintext message (α_1 and α_2).

(b) (10 pts) Alice and Bob exchange a message using MV-ElGamal cryptosystem with elliptic curve $E : y^2 = x^3 + 7x - 3$ over \mathbb{F}_{1223} , with the chosen point P = (11, 216). They use the correspondence $A \leftrightarrow 1, B \leftrightarrow 2, ..., Z \leftrightarrow 26$ to transform their text message into a plaintext $m \in \mathbb{F}_{1223}$. Sherlock intercepts the message $(Q_B, C_1, C_2) = ((1086, 292), 37, 681)$ that Bob sent to Alice. Moreover, Watson has found out and told Sherlock that the first part of the plaintext is $\alpha_1 \equiv 89 \leftrightarrow HI$. Use your answer to part (a) to recover the second part α_2 of the plaintext and the whole message $m = m_1 || m_2$.

Elliptic Curve Digital Signature Algorithm (ECDSA)

The **Elliptic Curve Digital Signature Algorithm** (ECDSA) is presented below (Samantha signs a document and Victor verifies the signature):

Step 1. Public Parameter Creation

A trusted party chooses a finite field \mathbb{F}_p , an elliptic curve E/\mathbb{F}_p , and a point $P \in E(\mathbb{F}_p)$ of large prime order q, i.e. qP = O, where O is the identity element.

Step 2. Key Creation

Samantha chooses a secret signing key $1 < n_S < q - 1$, computes $V = n_S P \in E(\mathbb{F}_p)$ and publishes the verification key V.

Step 3. Signing

Samantha chooses a document, i.e. a number D (mod q) and an ephemeral key $e \pmod{q}$. Then she computes $eP \in E(\mathbb{F}_p)$, followed by

 $s_1 \equiv x(eP) \pmod{q}$ and

 $s_2 \equiv (D + n_S s_1)e^{-1} \pmod{q}.$

Samantha publishes the signature (s_1, s_2) .

Step 4. Verification

Victor finds $v_1 \equiv Ds_2^{-1} \pmod{q}$ and $v_2 \equiv s_1s_2^{-1} \pmod{q}$. He computes $v_1P + v_2V \in E(\mathbb{F}_p)$ and verifies that $x(v_1P + v_2V) \equiv s_1 \pmod{q}$.

Problem 8. (10 pts) Prove that ECDSA works, i.e., check that the verification step succeeds in verifying a valid signature.¹⁰

Problem 9. This problem asks you to compute some numerical instances of ECDSA described above for the public parameters $E: Y^2 = X^3 + 231X + 473$, p = 17389, q = 1321, $P = (11259, 11278) \in E(\mathbb{F}_p)$. You should begin by verifying that P is a point of order q in $E(\mathbb{F}_p)$.

(a) (10 pts) Samantha's private signing key is s = 542. What is her public verification key V? What is her digital signature (s_1, s_2) on the document d = 644 using the ephemeral key e = 847?

(b) (10 pts) Tabitha's public verification key is V = (11017, 14637). Is $(s_1, s_2) = (907, 296)$ a valid signature on the document d = 993?¹¹

A bit more on elliptic curves

Definition 11. Let p be an odd prime number. An integer k is a **quadratic residue** modulo p if it is congruent to a perfect square modulo p (there exists $1 \le a \le p - 1$ with $k \equiv a^2 \pmod{p}$) and is a quadratic nonresidue modulo p otherwise. The **Legendre symbol** is a function of k and p defined as

$$\left(\frac{k}{p}\right) := \begin{cases} 1, k \text{ is a quadratic residue modulo } p \\ -1, k \text{ is a quadratic nonresidue modulo } p \\ 0, k \equiv 0 \pmod{p}. \end{cases}$$

•

¹⁰**Hint:** you need to check that $x(v_1P + v_2V) \equiv s_1 \mod q$, which is straightforward: $x(v_1P + v_2V) \equiv x(Ds_2^{-1}P + s_1s_2^{-1}n_SP) \equiv \dots$

¹¹Hint: see Step 4.

An equivalent definition (Legendre's original way) is

$$\left(\frac{k}{p}\right) \equiv k^{(p-1)/2} \; (\text{mod } p).$$

The Legendre symbol is a multiplicative function with respect to its top argument:

$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right).$$

Problem 10. (a) (5 pts) Use Legendre's definition to show that

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, p \equiv 1 \pmod{4} \\ -1, p \equiv 3 \pmod{4} \end{cases}$$

(b) (10 pts) Show that there are p + 1 points on the elliptic curve over \mathbb{F}_p given by $y^2 = x^3 - x$ with $p \equiv 3 \pmod{4}$.¹²

Problem 11. Let E be an elliptic curve with the equation $y^2 = x^3 + ax + b$.

(a) (10 pts) Show that if the equation $x^3 + ax + b$ splits into linear factors modulo p (in other words $x^3 + ax + b \equiv (x - \alpha)(x - \beta)(x - \gamma) \pmod{p}$ for some α , β and $\gamma \in \mathbb{F}_p$), then the group G(E) is not cyclic.

(b) (5 pts) If the cubic polynomial $x^3 + ax + b$ has a root modulo p, then the number of elements on E over \mathbb{F}_p is even.

¹²**Hint:** let $f(x) = x^3 - x$ and $a \in \mathbb{F}_p^*$, compare the Legendre symbols $\left(\frac{f(a)}{p}\right)$ and $\left(\frac{f(-a)}{p}\right)$.

Grover's algorithm

Problem 12. Let $f : \mathbb{B}^2 \to \mathbb{B}$ be the function given by

$$f(|\mathbf{x}_1\mathbf{x}_2\rangle) = \begin{cases} |0\rangle, & |\mathbf{x}_1\mathbf{x}_2\rangle \neq |11\rangle \\ |1\rangle, & |\mathbf{x}_1\mathbf{x}_2\rangle = |11\rangle. \end{cases}$$

(a) (5 *pts*) Using NOT, CNOT, CCNOT gates, draw a circuit for the oracle \mathcal{O}_{f} with $\mathcal{O}_{f}(|i\rangle|-\rangle) = (-1)^{f(i)}|i\rangle|-\rangle$ (the input state is $|x_{1}\rangle, |x_{2}\rangle, |-\rangle$).

(b) (5 pts) Let R be the reflection with respect to $|00\rangle$ i.e.

$$R(|i\rangle|-\rangle) = \begin{cases} |i\rangle|-\rangle, & i \neq 00\\ -|00\rangle|-\rangle, & i = 00. \end{cases}$$

Using NOT and CCNOT gates, draw a circuit for -R.¹³

(c) (5 pts) Draw a circuit for Grover diffusion operator $\mathcal{G} = H^{\otimes 2}(-R)H^{\otimes 2}\mathcal{O}_{f}$ (the operators in the circuit are applied from left to right).

 $^{^{13}}$ It is easier to construct a circuit for -R. As the images of the same state vector after application of R and -R differ by a global phase change (multiplication by -1 in this case), such vectors are equivalent.

(d) (5 *pts*) *Draw a complete circuit realizing Grover's algorithm (starting with all qubits and ancilla qubits in state* $|0\rangle$) with m = 1 iteration and find the resulting state vector prior to the measurement (show steps).